If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+18x-15=0
a = 5; b = 18; c = -15;
Δ = b2-4ac
Δ = 182-4·5·(-15)
Δ = 624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{624}=\sqrt{16*39}=\sqrt{16}*\sqrt{39}=4\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-4\sqrt{39}}{2*5}=\frac{-18-4\sqrt{39}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+4\sqrt{39}}{2*5}=\frac{-18+4\sqrt{39}}{10} $
| 71-2x=85-3x | | (5x+7)=(8x-71) | | 6x+29+3x+124=360 | | (x-1)+x+(x+1)=126 | | 3x-4+1=-2x-5+4x | | 7m-5=8m | | x=4–1 | | 3x-33=2x+18 | | 11.5=k/45 | | (3x-7)+(5x-21)=180 | | 3(y-2)-(Y-1)=-5(2y+1) | | 2x-4=14. | | (X-2)/3-(2x/7)=-1 | | 2x-x+5x=4 | | 6y-12=30y= | | (X-2)÷3-(2x÷7)=-1 | | z/10+2=7 | | 5z+1=9 | | 3x+3+2x-3x=25 | | 10-5/18n=6+1/6n | | ((X-2)÷3)-(2x÷7)=-1 | | 3x+27=2x+24 | | 2+.x/10=2/5 | | 3(4x10)=-18 | | 1.04x=4.16 | | -6(-6x+2)-3x=-4 | | 4x-2=-2+2x | | 335-5x= | | 6x-5+5x+7=180 | | 20=6z-4 | | 6^2x=162 | | 4x-15=48 |